

Lecture 14: Singular Homology

Chain complex

Let R be a commutative ring. A chain complex over R is a sequence of R-module maps

$$\cdots \to C_{n+1} \stackrel{\partial_{n+1}}{\to} C_n \stackrel{\partial_n}{\to} C_{n-1} \to \cdots$$

such that $\partial_n \circ \partial_{n+1} = 0 \ \forall n$. When R is not specified, we mean chain complex of abelian groups (i.e. $R = \mathbb{Z}$).

Sometimes we just write the map by ∂ and the chain complex by (C_{\bullet}, ∂) . Then $\partial_n = \partial|_{C_n}$ and $\partial^2 = 0$.

A chain map $f\colon C_\bullet\to C'_\bullet$ between two chain complexes over R is a sequence of R-module maps $f_n:C_n\to C'_n$ such that the following diagram is commutative

This can be simply expressed as

$$f \circ \partial = \partial' \circ f$$

We define the category $\underline{\mathrm{Ch}_{\bullet}(\mathrm{R})}$ whose objects are chain complexes over R and morphisms are chain maps. We simply write $\underline{\mathrm{Ch}_{\bullet}}$ when $R=\mathbb{Z}$.

Given a chain complex (C_{\bullet}, ∂) , we define its *n*-cycles Z_n and *n*-boundaries B_n by

$$Z_n = \operatorname{Ker}(\partial: C_n \to C_{n-1}), \quad B_n = \operatorname{Im}(\partial: C_{n+1} \to C_n).$$

The equation $\partial^2 = 0$ implies $B_n \subset Z_n$. We define the *n*-th homology group by

$$\left| H_n(C_{\bullet}, \partial) := \frac{Z_n}{B_n} = \frac{\ker(\partial_n)}{\operatorname{im}(\partial_{n+1})} \right|.$$

A chain complex C_{\bullet} is called acyclic or exact if

$$H_n(C_{\bullet}) = 0$$
 for any n .

Proposition

The *n*-th homology group defines a functor

$$H_n: \underline{\mathbf{Ch}}_{\bullet} \to \underline{\mathbf{Ab}}$$
.

Proof.

We only need to check any $f \colon C_{ullet} \to C_{ullet}$ induces a group homomorphism

$$f_*\colon H_n(C_\bullet)\to H_n(C'_\bullet).$$

This is because

- ▶ if $\alpha \in Z_n(C_{\bullet})$, then $f(\alpha) \in Z_n(C'_{\bullet})$;
- ▶ if $\alpha \in B_n(C_{\bullet})$, then $f(\alpha) \in B_n(C'_{\bullet})$.

A chain map $f\colon C_{ullet} o D_{ullet}$ is called a quasi-isomorphism if

$$f_*: H_n(C_{ullet}) o H_n(D_{ullet})$$

is an isomorphism for all n.

A chain homotopy $f \overset{s}{\simeq} g$ between two chain maps $f,g: C_{\bullet} \to C'_{\bullet}$ is a sequence of homomorphisms $s_n: C_n \to C'_{n+1}$ such that

$$f_n - g_n = s_{n-1} \circ \partial_n + \partial'_{n+1} \circ s_n,$$

or simply

$$f-g=s\circ\partial+\partial'\circ s.$$

Two complexes C_{\bullet} , C'_{\bullet} are called chain homotopy equivalent if there exists chain maps $f\colon C_{\bullet}\to C'_{\bullet}$ and $h\colon C'_{\bullet}\to C_{\bullet}$ such that

$$f \circ g \simeq 1$$
 and $g \circ f \simeq 1$.

Proposition

Chain homotopy defines an equivalence relation on chain maps and compatible with compositions.

In other words, chain homotopy defines an equivalence relation on \underline{Ch}_{\bullet} . We define the quotient category

$$\underline{\mathbf{h}}\underline{\mathbf{Ch}}_{\bullet} = \underline{\mathbf{Ch}}_{\bullet} / \simeq .$$

Chain homotopy equivalence becomes an isomorphism in $\underline{\mathbf{hCh}}_{\bullet}$.

Proposition

Let f, g be chain homotopic chain maps. Then they induce identical map on homology groups

$$H_n(f) = H_n(g) : H_n(C_{\bullet}) \to H_n(C'_{\bullet}).$$

In other words, the functor H_n factor through

$$H_n: \underline{\mathbf{Ch}}_{\bullet} \to \underline{\mathbf{hCh}}_{\bullet} \to \underline{\mathbf{Ab}}$$
.

Proof.

Let $f-g=s\circ\partial+\partial'\circ s$. Let $\alpha\in\mathcal{C}_n$ represent a class $[\alpha]$ in $H_n(\mathcal{C}_{\bullet})$. Since $\partial\alpha=0$, we have

$$(f-g)(\alpha) = (s \circ \partial + \partial' \circ s)(\alpha) = \partial' \circ (s(\alpha)) \in B_n(C_{\bullet}).$$

So
$$[f(\alpha)] = [g(\alpha)]$$
. Hence $H_n(f) = H_n(g)$ on homologies.

Singular Homology

We define the standard *n*-simplex

$$\Delta^{n} = \{(t_{0}, \dots, t_{n}) \in \mathbb{R}^{n+1} | \sum_{i=0}^{n} t_{i} = 1, t_{i} \geq 0 \}$$

We let $\{v_0, \dots, v_n\}$ denote its vertices. Here $v_i = (0, \dots, 0, 1, 0, \dots, 0)$ where 1 sits at the *i*-th position.

 ${\bf S}$: Standard 2-simplex Δ^2 and 3-simplex Δ^3

Let X be a topological space. A singular n-simplex in X is a continuous map $\sigma: \Delta^n \to X$. For each $n \geq 0$, we define $S_n(X)$ to be the free abelian group generated by all singular n-simplexes in X

$$S_n(X) = \bigoplus_{\sigma \in \operatorname{Hom}(\Delta^n, X)} \mathbb{Z}\sigma.$$

An element of $S_n(X)$ is called a singular n-chain in X.

A singular *n*-chain is given by a finite formal sum

$$\gamma = \sum_{\sigma \in \operatorname{Hom}(\Delta^n, X)} m_{\sigma} \sigma,$$

for $m_{\sigma} \in \mathbb{Z}$ and only finitely many m_{σ} 's are nonzero. The abelian group structure is:

$$-\gamma := \sum_{\sigma} (-m_{\sigma})\sigma$$

and

$$(\sum_{\sigma} m_{\sigma}\sigma) + (\sum_{\sigma} m'_{\sigma}\sigma) = \sum_{\sigma} (m_{\sigma} + m'_{\sigma})\sigma.$$

Given a singular *n*-simplex $\sigma: \Delta^n \to X$ and $0 \le i \le n$, we define

$$\partial^{(i)}\sigma:\Delta^{n-1}\to X$$

to be the (n-1)-simplex by restricting σ to the *i*-th face of Δ^n whose vertices are given by $\{v_0, v_1, \cdots, \hat{v}_i, \cdots, v_n\}$.

 ${\underline{\boxtimes}}$: Faces of 2-simplex Δ^2 and 3-simplex Δ^3

We define the boundary map

$$\partial: S_n(X) \to S_{n-1}(X)$$

to be the abelian group homomorphism generated by

$$\partial \sigma := \sum_{i=0}^{n} (-1)^{i} \partial^{(i)} \sigma.$$

Given a subset $\{v_{i_1}, \cdots, v_{i_k}\}$ of the vertices of Δ^n , we will write

$$\sigma | [v_{i_1}, \cdots, v_{i_k}]$$
 or just $[v_{i_1}, \cdots, v_{i_k}]$ (when it is clear from the context)

for restricting σ to the face of Δ^n spanned by $\{v_{i_1},\cdots,v_{i_k}\}$. Then the boundary map can be expressed by

$$\partial[\mathbf{v}_0,\cdots,\mathbf{v}_n]=\sum_{i=0}^n(-1)^i[\mathbf{v}_0,\mathbf{v}_1,\cdots,\hat{\mathbf{v}}_i,\cdots,\mathbf{v}_n].$$

Proposition

 $(S_{\bullet}(X), \partial)$ defines a chain complex, i.e., $\partial^2 = \partial \circ \partial = 0$.

Proof.

$$\partial \circ \partial [v_0, \dots, v_n]$$

$$= \partial \sum_{i=0}^n (-1)^i [v_0, v_1, \dots, \hat{v}_i, \dots, v_n]$$

$$= \sum_{i < j} (-1)^i (-1)^{j+1} [v_0, \dots, \hat{v}_i, \dots, \hat{v}_j, \dots, v_n]$$

$$+ \sum_{j < i} (-1)^i (-1)^j [v_0, \dots, \hat{v}_j, \dots, \hat{v}_i, \dots, v_n]$$

$$= 0.$$

Example

Consider a 2-simplex $\sigma: \Delta^2 \to X$. Then

$$\partial \sigma = [v_1, v_2] - [v_0, v_2] + [v_0, v_1]$$

and

$$\partial^2 \sigma = ([\mathbf{v}_2] - [\mathbf{v}_1]) - ([\mathbf{v}_2] - [\mathbf{v}_0]) + ([\mathbf{v}_1] - [\mathbf{v}_0]) = 0.$$

For each $n \ge 0$, we define the n-th singular homology group of X by

$$H_n(X) := H_n(S_{\bullet}(X), \partial)$$
.

Let $f: X \to Y$ be a continuous map, which gives a chain map

$$S_{\bullet}(f): S_{\bullet}(X) \to S_{\bullet}(Y).$$

This defines the functor of singular chain complex

$$S_{\bullet}: \underline{\mathbf{Top}} \to \underline{\mathbf{Ch}}_{\bullet}$$
.

Singular homology group can be viewed as the composition

$$\underline{\mathbf{Top}} \stackrel{S_{\bullet}}{\to} \underline{\mathbf{Ch}}_{\bullet} \stackrel{H_{n}}{\to} \underline{\mathbf{Ab}}.$$

Proposition

Let $f, g: X \to Y$ be homotopic maps. Then

$$S_{\bullet}(f), S_{\bullet}(g): S_{\bullet}(X) \to S_{\bullet}(Y)$$

are chain homotopic. In particular, they induce identical map

$$H_n(f) = H_n(g) : H_n(X) \to H_n(Y).$$

Proof: We only need to prove that for $i_0, i_1 : X \to X \times I$,

$$S_{\bullet}(i_0), S_{\bullet}(i_1): S_{\bullet}(X) \to S_{\bullet}(X \times I)$$

are chain homotopic. Then their composition with the homotopy $X \times I \to Y$ gives the proposition.

Let us define a homotopy

$$s: S_n(X) \to S_{n+1}(X \times I).$$

For $\sigma:\Delta^n\to X$, we define (topologically)

$$s(\sigma): \Delta^n \times I \stackrel{\sigma \times 1}{\to} X \times I.$$

Here we treat $\Delta^n \times I$ as a collection of (n+1)-simplexes as follows. Let $\{v_0, \cdots, v_n\}$ denote the vertices of Δ^n . The vertices of $\Delta^n \times I$ contain two copies $\{v_0, \cdots, v_n\}$ and $\{w_0, \cdots, w_n\}$.

Then

$$\Delta^{n} \times I = \sum_{i=0}^{n} (-1)^{i} [v_{0}, v_{1}, \dots v_{i}, w_{i}, w_{i+1}, \dots, w_{n}]$$

cuts $\Delta^n \times I$ into (n+1)-simplexes.

Its sum defines

$$s(\sigma) \in S_{n+1}(X \times I).$$

The following intuitive formula holds

$$\partial(\Delta^n \times I) = \Delta \times \partial I - (\partial \Delta^n) \times I$$

as singular chains. This leads to the chain homotopy

$$S_{\bullet}(i_1) - S_{\bullet}(i_0) = \partial \circ s + s \circ \partial.$$

Theorem

Singular homologies are homotopy invariants. They factor through $% \left(1\right) =\left(1\right) \left(1\right) \left($

$$H_n: \underline{\mathbf{hTop}} \to \underline{\mathbf{hCh}}_{\bullet} \to \underline{\mathbf{Ab}}$$
.

Theorem (Dimension Axiom)

If X is a one-point space, then

$$H_n(X) = \begin{cases} 0 & n > 0 \\ \mathbb{Z} & n = 0 \end{cases}$$

Proof: For each $n \ge 0$, there is only one $\sigma_n : \Delta^n \to X$.

$$S_n(X) = \mathbb{Z}\langle \sigma_n \rangle.$$

The boundary operator is

$$\partial \langle \sigma_n \rangle = \sum_{i=0}^n (-1)^i \langle \sigma_{n-1} \rangle = \begin{cases} 0 & n = \text{odd} \\ \sigma_{n-1} & n = \text{even.} \end{cases}$$

The singular chain complex of X becomes

$$\cdots \mathbb{Z} \xrightarrow{1} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{1} \mathbb{Z} \to \mathbb{Z} \to 0$$

which implies the theorem.

Some Homological algebra

The following lemma is very useful in dealing with chain complexes:

Lemma (Five Lemma)

Consider the commutative diagram of abelian groups with exact rows

$$A_{1} \longrightarrow A_{2} \longrightarrow A_{3} \longrightarrow A_{4} \longrightarrow A_{5}$$

$$\downarrow f_{1} \qquad \downarrow f_{2} \qquad \downarrow f_{3} \qquad \downarrow f_{4} \qquad \downarrow f_{5}$$

$$B_{1} \longrightarrow B_{2} \longrightarrow B_{3} \longrightarrow B_{4} \longrightarrow B_{5}$$

Then

- 1. If f_2 , f_4 are surjective and f_5 is injective, then f_3 is surjective.
- 2. If f_2 , f_4 are injective and f_1 is surjective, then f_3 is injective.
- 3. If f_1, f_2, f_4, f_5 are isomorphisms, then f_3 is an isomorphism.

Let $f:(C_{\bullet},\partial)\to (C_{\bullet},\partial')$ be a chain map. The mapping cone of f is the chain complex

$$cone(f)_n = C_{n-1} \oplus C'_n$$

with the differential

$$d: cone(f)_n \rightarrow cone(f)_{n-1},$$

$$\textit{d}(\textit{c}_{n-1},\textit{c}'_{n}) = (-\partial(\textit{c}_{n-1}),\partial'(\textit{c}'_{n}) - \textit{f}(\textit{c}_{n-1})).$$

Proposition

Let $f: (C_{\bullet}, \partial) \to (C'_{\bullet}, \partial')$ be a chain map.

1. There is an exact sequence

$$0 \to C'_{\bullet} \to cone(f)_{\bullet} \to C[-1]_{\bullet} \to 0$$

Here $C[-1]_{ullet}$ is the chain complex with $C[-1]_n:=C_{n-1}$ and differential $-\partial$ where ∂ is the differential in C.

- 2. f is a quasi-isomorphism if and only if $cone(f)_{\bullet}$ is acyclic.
- 3. Let $j: C_{\bullet} \hookrightarrow cone(f)_{\bullet}$ be the embedding above. Then $cone(j)_{\bullet}$ is chain homotopic equivalent to $C[-1]_{\bullet}$.

In homological algebra, a chain map f leads to a triangle

Here the dotted arrow is a chain map

$$cone(f)_{\bullet} \rightarrow C[-1]_{\bullet}.$$

This is closely related to the cofiber exact sequence. $cone(f)_{\bullet}$ is the analogue of homotopy cofiber of f. $C_{\bullet}[-1]$ is the analogue of the suspension. Then the above triangle structure can be viewed as

$$C_{\bullet} \stackrel{f}{\rightarrow} C_{\bullet} \rightarrow cone(f)_{\bullet} \rightarrow C_{\bullet}[-1] \stackrel{f[-1]}{\rightarrow} C_{\bullet}' \rightarrow \cdots$$